Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Generating high-quality synthetic networks with realistic community structure is vital to effectively evaluate community detection algorithms. In this study, we propose a new synthetic network generator called the Edge-Connected Stochastic Block Model (EC-SBM). The goal of EC-SBM is to take a given clustered real-world network and produce a synthetic network that resembles the clustered real-world network with respect to both network and community-specific criteria. In particular, we focus on simulating the internal edge connectivity of the clusters in the reference clustered network. Our performance study on large real-world networks shows that EC-SBM is generally more accurate with respect to network and community criteria than currently used approaches for this problem. Furthermore, we demonstrate that EC-SBM can complete analyses on several real-world networks with millions of nodes.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Community detection plays a central role in uncovering meso scale structures in networks. However, existing methods often suffer from disconnected or weakly connected clusters, undermining interpretability and robustness. Well-Connected Clusters (WCC) and Connectivity Modifier (CM) algorithms are post-processing techniques that improve the accuracy of many clustering methods. However, they are computationally prohibitive on massive graphs. In this work, we present optimized parallel implementations of WCC and CM using the HPE Chapel programming language. First, we design fast and efficient parallel algorithms that leverage Chapel’s parallel constructs to achieve substantial performance improvements and scalability on modern multicore architectures. Second, we integrate this software into Arkouda/Arachne, an open-source, high-performance framework for large-scale graph analytics. Our implementations uniquely enable well-connected community detection on massive graphs with more than 2 billion edges, providing a practical solution for connectivity-preserving clustering at web scale. For example, our implementations of WCC and CM enable community detection of the over 2-billion edge Open-Alex dataset in minutes using 128 cores, a result infeasible to compute previously.more » « lessFree, publicly-accessible full text available October 1, 2026
An official website of the United States government
